Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Sci Total Environ ; : 172418, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631622

RESUMO

Seeking low-cost and eco-friendly electrode catalyst of microbial fuel cell (MFC) reactor has received extensive attention in recent decades. In this study, a sludge MFC was coupled with biochar-modified-anode (BC-300, BC-400, and BC-500) for actual brewery wastewater treatment. The physicochemical properties of biochar largely depended on the pyrolysis temperature, further affecting the removal efficiency of wastewater indicators. BC-400 MFC proved to be efficient for TN and NH4+-N removal, while the maximum removal efficiencies of COD and TP were achieved by BC-500 MFC, reaching respectively 97.14 % and 89.67 %. Biochar could promote the degradation of dissolved organic matter (DOM) in wastewater by increasing the electrochemical performances of MFC. The maximum output voltage of BC-400 MFC reached 410.24 mV, and the maximum electricity generation of 108.05 mW/m2 was also obtained, surpassing the pristine MFC (BCC-MFC) by 4.67 times. High-throughput sequencing results illustrated that the enrichment of electrochemically active bacteria (EAB) and functional bacteria (Longilinea, Denitratisoma, and Pseudomonas) in BC-MFCs, contributed to pollutants degradation and electron transfer. Furthermore, biochar affected directly the electrical conductivity of wastewater, simultaneously changing microbial community composition of MFC anode. Considering both enhanced removal efficiency of pollutants and increased power generation, the results of this study would offer technical reference for the application of biochar as MFC catalyst for brewery wastewater treatment.

2.
Appl Opt ; 63(8): 1929-1933, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38568630

RESUMO

Nanocomposite scintillators are expected to combine the advantages of inorganic and plastic scintillators, such as high detection efficiency, high light yield, fast decay time, low cost, and ease of processing. They are currently the forefront and hot field of scintillator research. In this study, a non-destructive method was developed for measuring the content of inorganic components in nanocomposite scintillators by terahertz time-domain spectroscopy. The complex refractive index of B a F 2 nanocomposite scintillators with different mass contents was measured in the terahertz band. As the mass content of B a F 2 nanoparticles increases, the refractive index and extinction coefficient of B a F 2 nanocomposite scintillators also gradually increase in the terahertz band. By combining the effective medium theory, the expected mass content was obtained, proving the feasibility of this measuring method.

3.
BMC Infect Dis ; 24(1): 342, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515075

RESUMO

Scedosporium apiospermum species complex are widely distributed fungi that can be found in a variety of polluted environments, including soil, sewage, and decaying vegetation. Those opportunistic pathogens with strong potential of invasion commonly affect immunosuppressed populations However, few cases of scedosporiosis are reported in immunocompetent individuals, who might be misdiagnosed, leading to a high mortality rate. Here, we reported an immunocompetent case of systemtic infection involved in lung, brain and spine, caused by S. apiospermum species complex (S. apiospermum and S. boydii). The patient was an elderly male with persistent fever and systemtic infection after near-drowning. In the two tertiary hospitals he visited, definite diagnosis was extremely difficult. After being admitted to our hospital, he was misdiagnosed as tuberculosis infection, before diagnosis of S. apiospermum species complex infection by the metagenomic next-generation sequencing. His symptoms were alleviated after voriconazole treatment. In the present case, the details associated with its course were reported and published studies on Scedosporium spp. infection were also reviewed, for a better understanding of this disease and reducing the misdiagnosis rate.


Assuntos
Infecções Fúngicas Invasivas , Afogamento Iminente , Scedosporium , Humanos , Masculino , Idoso , Antifúngicos/uso terapêutico , Voriconazol/uso terapêutico , Pulmão/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
4.
J Am Chem Soc ; 146(12): 8650-8658, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489842

RESUMO

The development of synthetic oligomers as discrete single molecular entities with accurate control over the number and nature of functional groups along the backbone has enabled a variety of new research opportunities. From fundamental studies of self-assembly in materials science to understanding efficacy and safety profiles in biology and pharmaceuticals, future directions are significantly impacted by the availability of discrete, multifunctional oligomers. However, the preparation of diverse libraries of discrete and stereospecific oligomers remains a significant challenge. We report a novel strategy for accelerating the synthesis and isolation of discrete oligomers in a high-throughput manner based on click chemistry and simplified bead-based purification. The resulting synthetic platform allows libraries of discrete polyether oligomers to be prepared and the impact of variables such as chain length, number, and nature of side chain functionalities and molecular dispersity on antibacterial behavior examined. Significantly, discrete oligomers were shown to exhibit enhanced activity with lower toxicity compared with traditional disperse samples. This work provides a practical and scalable methodology for nonexperts to prepare libraries of multifunctional discrete oligomers and demonstrates the advantages of discrete materials in biological applications.


Assuntos
Química Click
5.
Sci Total Environ ; 926: 171688, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38492606

RESUMO

Ocean acidification (OA) driven by elevated carbon dioxide (CO2) levels is expected to disturb marine ecological processes, including the formation and control of harmful algal blooms (HABs). In this study, the effects of rising CO2 on the allelopathic effects of macroalgae Ulva pertusa to a toxic dinoflagellate Karenia mikimotoi were investigated. It was found that high level of CO2 (1000 ppmv) promoted the competitive growth of K. mikimotoi compared to the group of present ambient CO2 level (420ppmv), with the number of algal cell increased from 32.2 × 104 cells/mL to 36.75 × 104 cells/mL after 96 h mono-culture. Additionally, rising CO2 level weakened allelopathic effects of U. pertusa on K. mikimotoi, as demonstrated by the decreased inhibition rate (50.6 % under the original condition VS 34.3 % under the acidified condition after 96 h co-culture) and the decreased reactive oxygen species (ROS) level, malondialdehyde (MDA) content, antioxidant enzymes activity (superoxide dismutase (SOD), peroxidase (POD), glutathione peroxidase (GPX), glutathione reductase (GR) and catalase (CAT) and non-enzymatic antioxidants (glutathione (GSH) and ascorbic acid (ascorbate, vitamin C). Indicators for cell apoptosis of K. mikimotoi including decreased caspase-3 and -9 protease activity were observed when the co-cultured systems were under rising CO2 exposure. Furthermore, high CO2 level disturbed fatty acid synthesis in U. pertusa and significantly decreased the contents of fatty acids with allelopathy, resulting in the allelopathy weakening of U. pertusa. Collectively, rising CO2 level promoted the growth of K. mikimotoi and weakened allelopathic effects of U. pertusa on K. mikimotoi, indicating the increased difficulties in controlling K. mikimotoi using macroalgae in the future.


Assuntos
Dinoflagelados , Alga Marinha , Dióxido de Carbono/toxicidade , Concentração de Íons de Hidrogênio , Água do Mar , Dinoflagelados/fisiologia , Proliferação Nociva de Algas
7.
Mater Today Bio ; 25: 100947, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38298562

RESUMO

Cyclophosphamide is commonly used in the treatment of various cancers and autoimmune diseases, while concurrently imposing substantial toxicity on the bladder, frequently manifesting hemorrhagic cystitis. Intravesical interventions, such as hyaluronic acid supplementation, present a therapeutic strategy to reinstate bladder barrier function and alleviate the effects of metabolic toxicants. However, it remains a great challenge to achieve efficient cyclophosphamide-induced hemorrhagic cystitis (CHC) management with accelerated tissue repair owing to the low wet-adhesion, poor hemostasis, and acute inflammatory responses. To address these issues, a hemostatic and anti-inflammatory hydrogel adhesive of chitosan methylacryloyl/silk fibroin methylacryloyl (CHMA/SFMA) is developed for promoting the healing of CHC. The obtained hydrogels show a high adhesive strength of 26.21 N/m with porcine bladder, facilitating the rapid hemostasis within 15 s, and reinstate bladder barrier function. Moreover, this hydrogel adhesive promotes the proliferation and aggregation of SV-HUC-1 and regulates macrophage polarization. Implanting the hydrogels into CHC bladders of a SD rat model, they not only can be completely biodegraded in 14 days, but also effectively control hematuria and inflammation, and accelerate angiogenesis, thereby significantly promote the healing of bladder injury. Overall, CHMA/SFMA hydrogels exhibit rapid hemostasis for treating CHC and accelerate muscle tissue repair via angiogenesis and inflammation amelioration, which may provide a new path for managing severe hemorrhagic cystitis in the clinics.

8.
Sensors (Basel) ; 24(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38400362

RESUMO

In this study, a quantitative detection method of pipeline cracks based on a one-dimensional convolutional neural network (1D-CNN) was developed using the time-domain signal of ultrasonic guided waves and the crack size of the pipeline as the input and output, respectively. Pipeline ultrasonic guided wave detection signals under different crack defect conditions were obtained via numerical simulations and experiments, and these signals were input as features into a multi-layer perceptron and one-dimensional convolutional neural network (1D-CNN) for training. The results revealed that the 1D-CNN performed better in the quantitative analysis of pipeline crack defects, with an error of less than 2% in the simulated and experimental data, and it could effectively evaluate the size of crack defects from the echo signals under different frequency excitations. Thus, by combining the ultrasonic guided wave detection technology and CNN, a quantitative analysis of pipeline crack defects can be effectively realized.

9.
Front Genet ; 15: 1197151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380423

RESUMO

Background and aims: Defective enzymes, cofactors, or transporters of metabolic pathways cause inherited metabolic disorders (IMDs), a group of genetic disorders. Several IMDs have serious consequences for the affected neonates. Newborn screening for IMDs is conducted by measuring specific metabolites between 3 and 7 days of life. Herein, we analyzed the incidence, spectrum, and genetic characteristics of IMDs in newborns in the Zhuzhou area. Methods: Tandem mass spectrometry was conducted on 90,829 newborns who were admitted to the Women and Children Healthcare Hospital of Zhuzhou and requested for screening for IMDs. These newborns were subsequently subjected to next-generation sequencing and further validated using Sanger sequencing. Results: 30 IMDs cases were found in 90,829 cases of newborns screened for IMDs, and the overall incidence was 1/3,027. The incidence of amino acid, organic acid, fatty acid oxidation and urea cycle disorders were 1/8,257, 1/18,165, 1/7,569, and 1/45,414, respectively. Additionally, 9 cases of maternal IMDs were found in our study, and unreported gene mutations of 3 cases IMDs were identified. Conclusion: Our data indicated that IMDs are never uncommon in zhuzhou, meanwhile, we also found that primary carnitine deficiency was the only disorder of fatty acid oxidation in Zhuzhou, and the incidence (1/7,569) was higher than the national level, organic acid metabolic diseases are mostly inherited. Therefore, our study has clarified the disease spectrum and genetic backgrounds, contributing to the treatment and prenatal genetic counseling of these disorders in this region.

10.
Acta Pharm Sin B ; 14(1): 405-420, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38261810

RESUMO

Lignans are a powerful weapon for plants to resist stresses and have diverse bioactive functions to protect human health. Elucidating the mechanisms of stereoselective biosynthesis and response to stresses of lignans is important for the guidance of plant improvement. Here, we identified the complete pathway to stereoselectively synthesize antiviral (-)-lariciresinol glucosides in Isatis indigotica roots, which consists of three-step sequential stereoselective enzymes DIR1/2, PLR, and UGT71B2. DIR1 was further identified as the key gene in respoJanuary 2024nse to stresses and was able to trigger stress defenses by mediating the elevation in lignan content. Mechanistically, the phytohormone-responsive ERF transcription factor LTF1 colocalized with DIR1 in the cell periphery of the vascular regions in mature roots and helped resist biotic and abiotic stresses by directly regulating the expression of DIR1. These systematic results suggest that DIR1 as the first common step of the lignan pathway cooperates with PLR and UGT71B2 to stereoselectively synthesize (-)-lariciresinol derived antiviral lignans in I. indigotica roots and is also a part of the LTF1-mediated regulatory network to resist stresses. In conclusion, the LTF1-DIR1 module is an ideal engineering target to improve plant Defenses while increasing the content of valuable lignans in plants.

11.
Bioresour Technol ; 394: 130288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181999

RESUMO

The sulfur-doped titanium dioxide (S-TiO2) cooperated with Zirconium based on a kind of metal-organic framework (MOF-808) was successfully prepared as cathode catalyst (S-TiO2@MOF-808) of microbial fuel cell (MFC) by two-step hydrothermal reaction. The particle size was approximately 5 µm, and the spherical S-TiO2 particle was attached to the surface of MOF-808 as irregular block solid. Zr-O, C-O and O-H bond were indicated to exist in S-TiO2@MOF-808. When n (Zr4+): n(Ti4+) was 1: 5, S-TiO2@MOF-808 showed better oxygen reduction reaction (ORR). The introduction of S-TiO2 restrained the framework collapse of MOF-808, S-TiO2@MOF-808 showed much higher catalytic stability in reaction. The recombination of sulfur and TiO2 reduced the charge transfer resistance, accelerated the electron transfer rate, and improved ORR greatly. The maximum power density of S-TiO2@MOF-808-MFC was 84.05 mW/m2, about 2.17 times of S-TiO2-MFC (38.64 mW/m2). The maximum voltage of S-TiO2@MOF-808-MFC was 205 mV, and the stability was maintained for 6 d.


Assuntos
Fontes de Energia Bioelétrica , Estruturas Metalorgânicas , Titânio , Zircônio , Eletrodos , Enxofre
12.
Small ; : e2309087, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221690

RESUMO

The severe deterioration of the marine ecosystem significantly negatively impacts the performance of solar-driven steam generation (SSG) and the quality of the obtained freshwater. Herein, a bifunctional Ag/MgFe2 O4 @SCW reactor with a sandwich structure is designed for efficient SSG and Cr(VI) reduction, which is constructed via in situ deposit Ag nanoparticles (NPs) and MgFe2 O4 onto surface carbonized wood (SCW). Owing to the advanced sandwich structure and strong interfacial interactions between each component, an ultra-high evaporation rate of 1.55 kg m-2 h-1 and the efficiency of 88.6% are achieved using Ag/MgFe2 O4 @SCW under 1 sun. The system exhibits the long-term evaporation performance in the simulated sewage and strong acid/base solutions along with water-harvesting capacity in outdoor solar desalination. The quality of distilled water after desalination of actual seawater and NaCl solutions with different concentrations meets the WHO-recommended drinkable water standards. Furthermore, Ag/MgFe2 O4 @SCW shows outstanding antibacterial property, self-desalting capacity, as well as reusability and structure stability. Most importantly, the fast carrier separation endows Ag/MgFe2 O4 @SCW with superior photocatalytic activity and Cr(VI) photoreduction of up to 96.1% after 180 min of illumination. The bifunctional Ag/MgFe2 O4 @SCW reactor provides an advanced synergistic mechanism for improving SSG and photocatalytic performance, while being promising for solar-powered production of clean water.

13.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166917, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37820821

RESUMO

The tumor microenvironment consists of cancer cells and various stromal cells, including macrophages, which exhibit diverse phenotypes with either pro-inflammatory (M1) or anti-inflammatory (M2) effects. The interaction between cancer cells and macrophages plays a crucial role in tumor progression. Small extracellular vesicles (sEVs), which facilitate intercellular communication, are known to play a vital role in this process. This review provides a comprehensive summary of how sEVs derived from cancer cells, containing miRNAs, lncRNAs, proteins, and lipids, can influence macrophage polarization. Additionally, we discuss the impact of macrophage-secreted sEVs on tumor malignant transformation, including effects on proliferation, metastasis, angiogenesis, chemoresistance, and immune escape. Furthermore, we address the therapeutic advancements and current challenges associated with macrophage-associated sEVs, along with potential solutions.


Assuntos
Vesículas Extracelulares , Macrófagos Associados a Tumor , Imunoterapia , Macrófagos , Comunicação Celular
14.
Environ Sci Pollut Res Int ; 31(1): 191-214, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049687

RESUMO

Nano silver (Ag) was metallic Ag monomers with particle size to the nanoscale. Photocatalyst was a kind of semiconductor material with photocatalytic function. Loading precious metal Ag onto semiconductor surfaces by microwave, laser-induced, solvent-thermal and hydrothermal methods could capture photogenerated electrons, reduced the compounding rate of holes and photogenerated electrons during the photocatalytic process, thereby improving the electron transfer efficiency of photocatalysis and enhancing the absorption of visible light by silver nanoparticles through the plasma resonance effect. The highly reactive free radicals produced by photocatalysts were used in the organic degradation process to degrade organic matter into inorganic matter and was a faster, more efficient and less polluting method of pollutant degradation, which has attracted a lot of attention from researchers. This review discussed the modification of various types of photocatalysts by nano Ag through different methods. The photocatalytic degradation of dyes, antibiotics and persistent organic pollutants by different modified composites was also analyzed. This review covered the several ways and means in which nano Ag has modified diverse photocatalytic materials as well as the photocatalytic degradation of dyes, antibiotics and persistent organic pollutants. This review identified the drawbacks of the existing nano Ag-modified photocatalytic materials, including their low yield and lack of recyclability, and it also offered suggestions for potential future directions for their improvement. The purpose of this review was to further research on the technology of nano Ag-modified photocatalytic materials and to encourage the creation of new modified photocatalytic nanomaterials for the treatment of organic pollutant degradation.


Assuntos
Poluentes Ambientais , Nanopartículas Metálicas , Prata , Poluentes Orgânicos Persistentes , Antibacterianos , Luz , Corantes , Catálise
15.
J Hazard Mater ; 465: 133273, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38113729

RESUMO

Photocatalytic technology showed significant potential for addressing the issue of cyanobacterial blooms resulting from eutrophication in bodies of water. However, the traditional powder materials were easy to agglomerate and settle, which led to the decrease of photocatalytic activity. The emergence of floating photocatalyst was important for the practical application of controlling harmful algal blooms. This study was based on the efficient powder photocatalyst bismuth oxide composite copper-metal organic framework (Bi2O3 @Cu-MOF), which was successfully loaded onto melamine sponge (MS) by sodium alginate immobilization to prepare a floating photocatalyst MS/Bi2O3 @Cu-MOF for the inactivation of Microcystis aeruginosa (M. aeruginosa) under visible light. When the capacity was 0.4 g (CA0.4), MS/Bi2O3 @Cu-MOF showed good photocatalytic activity, and the inactivation rate of M. aeruginosa reached 74.462% after 120 h. MS/Bi2O3 @Cu-MOF-CA0.4 showed a large specific surface area of 30.490 m2/g and an average pore size of 22.862 nm, belonging to mesoporous materials. After 120 h of treatment, the content of soluble protein in the MS/Bi2O3 @Cu-MOF-CA0.4 treatment group decreased to 0.365 mg/L, the content of chlorophyll a (chla) was 0.023 mg/L, the content of malondialdehyde (MDA) increased to 3.168 nmol/mgprot, and the contents of various antioxidant enzymes experienced drastic changes, first increasing and then decreasing. The photocatalytic process generated·OH and·O2-, which played key role in inactivating the algae cells. Additionally, the release of Cu2+ and adsorption of the material also contributed to the process.


Assuntos
Estruturas Metalorgânicas , Microcystis , Triazinas , Cobre/metabolismo , Microcystis/metabolismo , Estruturas Metalorgânicas/metabolismo , Clorofila A , Seda/metabolismo , Pós/metabolismo , Bismuto , Proliferação Nociva de Algas
16.
Environ Sci Pollut Res Int ; 31(4): 5013-5031, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147259

RESUMO

An increasing amount of sewage has been discharged into water bodies in the progression of industrialization and urbanization, causing serious water pollution. Meanwhile, the increase of nutrients in the water induces water eutrophication and rapid growth of algae. Photocatalysis is a common technique for algal inhibition and sterilization. To improve the utilization of visible light and the conversion efficiency of solar energy, more organic photocatalytic materials have been gradually developed. In addition to ultraviolet light, partial infrared light and visible light could also be used by organic photocatalysts compared with inorganic photocatalysts. Simultaneously, organic photocatalysts also exhibit favorable stability. Most organic photocatalysts can maintain a high degradation rate for algae and bacteria after several cycles. There are various organic semiconductors, mainly including small organic molecules, such as perylene diimide (PDI), porphyrin (TCPP), and new carbon materials (fullerene (C60), graphene (GO), and carbon nanotubes (CNT)), and large organic polymers, such as graphite phase carbon nitride (g-C3N4), polypyrrole (PPy), polythiophene (PTH), polyaniline (PANI), and polyimide (PI). In this review, the classification and synthesis methods of organic photocatalytic materials were elucidated. It was demonstrated that the full visible spectral response (400-750 nm) could be stimulated by modifying organic photocatalysts. Moreover, some problems were summarized based on the research status related to algae and bacteria, and corresponding suggestions were also provided for the development of organic photocatalytic materials.


Assuntos
Nanotubos de Carbono , Polímeros , Pirróis , Luz , Esterilização , Água , Catálise
17.
Biochem Pharmacol ; 220: 116011, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154548

RESUMO

Sinularin, a natural product that purified from soft coral, exhibits anti-tumor effects against various human cancers. However, the mechanisms are not well understood. In this study, we demonstrated that Sinularin inhibited the viability of human prostate cancer cells in a dose-dependent manner and displayed significant cytotoxicity only at high concentration against normal prostate epithelial cell RWPE-1. Flow cytometry assay demonstrated that Sinularin induced tumor cell apoptosis. Further investigations revealed that Sinularin exerted anti-tumor activity through intrinsic apoptotic pathway along with up-regulation of pro-apoptotic protein Bax and PUMA, inhibition of anti-apoptotic protein Bcl-2, mitochondrial membrane potential collapses, and release of mitochondrial proteins. Furthermore, we illustrated that Sinularin induced cell apoptosis via up-regulating PUMA through inhibition of FOXO3 degradation by the ubiquitin-proteasome pathway. To explore how Sinularin suppress FOXO3 ubiquitin-proteasome degradation, we tested two important protein kinases AKT and ERK that regulate FOXO3 stabilization. The results revealed that Sinularin stabilized and up-regulated FOXO3 via inhibition of AKT- and ERK1/2-mediated FOXO3 phosphorylation and subsequent ubiquitin-proteasome degradation. Our findings illustrated the potential mechanisms by which Sinularin induced cell apoptosis and Sinularin may be applied as a therapeutic agent for human prostate cancer.


Assuntos
Proteínas Reguladoras de Apoptose , Diterpenos , Compostos Heterocíclicos com 3 Anéis , Neoplasias da Próstata , Humanos , Masculino , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Proteína Forkhead Box O3 , Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitinas/metabolismo
18.
Childs Nerv Syst ; 40(5): 1471-1476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38127139

RESUMO

PURPOSE: To compare the impact of burr hole drainage and craniotomy for acute liquid epidural hematoma (LEDH) in pediatric patients. METHODS: This retrospective study enrolled pediatric patients with LEDH who underwent surgery in the Affiliated Hospital of Nanyang Medical College, China, between October 2011 and December 2019. According to the surgical procedure, patients were divided into the craniotomy group and the burr hole drainage group. RESULTS: A total of 21 pediatric patients were enrolled (14 males, aged 7.19 ± 2.77 years), including 13 cases in the burr hole drainage group and 8 patients in the craniotomy group. The operation time and hospitalization period in the burr hole drainage group were 33.38 ± 6.99 min and 9.85 ± 1.07 days, respectively, which were significantly shorter than that in the craniotomy group (74.25 ± 9.68 min and 13.38 ± 1.71 days, respectively; all p < 0.05). The Glasgow Coma Scale (GCS) score after burr hole drainage was significantly improved than before (median: 15 vs 13, p < 0.05). No serious complications were observed in either group; one patient in the craniotomy group developed an infection at the incision point. All patients were conscious (GCS score was 15) at discharge. CONCLUSION: Compared with craniotomy, burr hole drainage was associated with better clinical outcomes and early recovery in patients with LEDH.


Assuntos
Hematoma Epidural Craniano , Hematoma Epidural Espinal , Hematoma Subdural Crônico , Masculino , Humanos , Criança , Estudos Retrospectivos , Hematoma Subdural Crônico/cirurgia , Craniotomia/métodos , Drenagem/métodos , Hematoma Epidural Craniano/cirurgia , Hematoma Epidural Espinal/cirurgia , Resultado do Tratamento
19.
J Environ Manage ; 351: 119913, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154222

RESUMO

The intimately coupled photocatalysis and biodegradation (ICPB), which combined the advantages of high oxidation capacity of photocatalysis and high mineralization rate of biodegradation, has demonstrated excellent removal performance in the degradation of azo dyes with highly toxic, refractory, mutagenic and carcinogenic. In order to explore the metagenomics mechanism of the ICPB system, a novel ICPB was prepared by coupling Rhodopseudomonas palustris (R. Palustris), carbon nanotube - silver modified titanium dioxide photocatalytic composite (CNT-Ag -TiO2, CAT) and sodium alginate (SA) (R. palustris/CAT@SA, R-CAT). Metagenomics sequencing was used to investigate the molecular mechanism of adaptation and degradation of dyes by photosynthetic microorganisms and the adaptive and synergistic interaction between photosynthetic microorganisms and photocatalyst. Experiments on the adaptability and degradability of photosynthetic microorganisms have proved that low concentration azo dyes could be utilized as carbon sources for growth of photosynthetic microorganisms. Metagenomics sequencing revealed that R. palustris was the main degrading bacterium in photosynthetic microorganisms and the functional genes related to carbohydrate metabolism, biological regulation and catalytic activity were abundant. It was found that the addition of photocatalyst significantly up-regulated the functional genes related to the catabolic process, electron transport, oxidoreductase activity and superoxide metabolism of organic matter in the photosynthetic microorganisms. Moreover, many key gene such as alpha-amylase, 1-acyl-sn-glycerol-3-phosphate acyltransferase, aldehyde dehydrogenase enrichment in microbial basal metabolism, such as enoyl-CoA hydratase, malate dehydrogenase, glutathione S-transferase enrichment in degrading azo dyes and electron transport, and many key gene such as undecaprenyl-diphosphatase, carbon storage regulator, DNA ligase enrichment in response to dyes and photocatalysts were discovered. These findings would contribute to a comprehensive understanding of the mechanism of degradation of dye wastewater by ICPB system, a series of genes was produced to adapt to environmental changes, and played synergistic role in terms of intermediate product degradation and electron transfer for degrading azo dyes. The photosynthetic microorganisms might be a promising microorganism for constructing ICPB system.


Assuntos
Nanotubos de Carbono , Rodopseudomonas , Águas Residuárias , Prata , Corantes/metabolismo , Titânio , Biodegradação Ambiental , Compostos Azo , Catálise
20.
Proc Natl Acad Sci U S A ; 120(52): e2313514120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109538

RESUMO

To cope with seasonal environmental changes, organisms have evolved approximately 1-y endogenous circannual clocks. These circannual clocks regulate various physiological properties and behaviors such as reproduction, hibernation, migration, and molting, thus providing organisms with adaptive advantages. Although several hypotheses have been proposed, the genes that regulate circannual rhythms and the underlying mechanisms controlling long-term circannual clocks remain unknown in any organism. Here, we show a transcriptional program underlying the circannual clock in medaka fish (Oryzias latipes). We monitored the seasonal reproductive rhythms of medaka kept under natural outdoor conditions for 2 y. Linear regression analysis suggested that seasonal changes in reproductive activity were predominantly determined by an endogenous program. Medaka hypothalamic and pituitary transcriptomes were obtained monthly over 2 y and daily on all equinoxes and solstices. Analysis identified 3,341 seasonally oscillating genes and 1,381 daily oscillating genes. We then examined the existence of circannual rhythms in medaka via maintaining them under constant photoperiodic conditions. Medaka exhibited approximately 6-mo free-running circannual rhythms under constant conditions, and monthly transcriptomes under constant conditions identified 518 circannual genes. Gene ontology analysis of circannual genes highlighted the enrichment of genes related to cell proliferation and differentiation. Altogether, our findings support the "histogenesis hypothesis" that postulates the involvement of tissue remodeling in circannual time-keeping.


Assuntos
Oryzias , Animais , Oryzias/genética , Estações do Ano , Ritmo Circadiano/fisiologia , Gônadas , Fotoperíodo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...